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PREFACE

Increasingly, the mathematical theory of games is

finding interesting applications in the study of military

conflict situations. This Memorandum examines an attack-

defense game involving allocation of resources.

This application of the mathematical theories to a

particular strategy game should be of interest both to

mathematicians and to those directly involved in studies

and analyses of military conflict situations.

Shortly after the release of RM-4274-PR, an error

was discovered in the derivation of the results that re-

quired the issuance of this revision. The results quoted

here are slightly less general than those given in the

original version. This deficiency is overcome to a certain

extent by the inclusion of a second payoff function and a

more realistic example.
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ABSTRACT

This paper presents the results and the method of

analysis for an attack-defense game involving allocation

of resources. Each player is assumed to have several

different types of resources to be divided in an optimal

fashion among a fixed set of targets. The payoff function

of the game is convex.

The "No Soft-Spot" principle of M. Dresher, and the

concept of the generalized inverse of a matrix are used

to determine optimal strategies for each player and the

value of the game.

*
Dresher, M. Games of Strategy: Theory and Applica-

tions, Prentice-Hall, Englewood Cliffs, New Jersey, 1961.
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AN ATTACK-DEFENSE GAME WITH MATRix STRATEGIES

N. D. Cohen

1. INTRODUCTION

Karlin [1] and Dresher [2] discussed an attack-defense

game in which each or two players has a fixed amount of re-

sources to be allocated among a set of targets. The attacker

wishes to maximize, and the defender minimize, the amount

of damage inflicted on the targets. These authors assume a

convex payoff function and derive an optimal strategy for

each player and the game value.

This paper generalizes these results. The resources

of each player are divided into a fixed number of types,

each type comprising a fixed percentage of the whole. Spe-

cifically, the attacker (Blue) has A resource units divided
th

into s types, the m type consisting of a units withm

This research is sponsored by the United States Air
Force under Project RAND--Conttact No. AF49(638)-700
monitored by the Directorate of Development Plans, Deputy
Chief of Staff, Research and Development, Hq USAF. Views
or conclusions contained in this Memorandum should not be
interpreted as representing the official opinion or policy
of the United States Air Force.

This abridged and revised version of RM-4274-PR was
prepared for publication in The Naval Research-Logistics
Quarterly.
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S

(1.1) am -A.

m-1

Similarly, the defender (Red) has D units divided into r
.th

types, the j type consisting of d. units withj

r

(1.2) .d D

j-l

th

The m type of resource unit, if unopposed, can earn

for the attacker a unit payoff , independent of the tar-

get. Further, each target Ti~l ( i • n) has a unit value

Yi > 0. That is, each unopposed attacking unit of type m at

the ith target, will earn for Blue a payoff yiCm. Finally,

the attacker is at least as strong as the defender (A Ž D),

and the targets are ordered so that

(1.3) Yi z Y2 Ž " - Yn "

Introducing distinct types of offensive and defensive

units requires the defender to determine what percentage

of his forces at each target will be expended on each type

of offensive unit. To simplify the present analysis, we
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will assume that this decision process is defined by a

matrix A (X mj), where A mj denotes that fraction of the

allocated defensive units of type j to be used against an

offensive unit of type m at any target. This definition

implies that

(1.4) 0 • Am. • 1 (1 • j • r, 1 • m • s),

and Z Xmi =1I

M-1m~l

The types of resource units available to the players

will partially determine the assignment of values to the

X 's. For example, torpedos cannot be used against planes,

but neutralizing an aircraft carrier may require several

torpedos (or many planes). Since the defender's optimal

strategy and the game value depend strongly on the elements

of A (see Sec. 5), a proper choice of these values may

greatly decrease the attacker's payoff.

For the sake of definiteness, we will assume hence-

forth that s s r. Then the column vectors of A are linearly

independent. If they were not, then two or more types of

defensive units could be combined into a single type without
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loss of generality. Therefore, the rank of A equals s.

If s > r, we must work with the transpose of A. In this

case, the row vectors of A' are linearly independent and

the rank of A' equals r.
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2. PAYOFF FUuiNION

The payoff function of the game will in general re-

flect the aims of the attacker. if the only consideration

is inflicting damage on the targets, then the attacker will

only be concerrid with achieving a numerical superiority

for each of his types of resources at each target. Thus,
.th

if at the i. target, the attacker's forces of resource

type m are not numerically superior to the defending forces

opposing them, then the payoff to the attacker corresponding

to that resource type is zero.

On the otaer hand, the attacker may be equally concerned

with preventing the defender from achieving an offensive role

at some future time. In this case, the attacker must assume

to have received no advantage (zero payoff) unless at any

target his total forces are numerically superior to the de-

fender's total forces. The following discussion refers to

these two different philosophies as Case I and Case II.

The foregoing remarks imply several simplifying as-

sumptions common to most game theoretic solutions of military

conflic.2 situations. First, the game consists of a single

move during which the players act simultaneously. Second,

the targets are independent of one another (i.e., an attack
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on one of them has no effect on any other), opposing forces

of equal strength neutralize each other, and finally, a

commitment of forces once made by a player cannot be changed.

With the above restrictions in mind and to retain the

spirit of [1] and [2i, we will assume the following payoff

functions (for Blue).

Case I:

n s r

(2.1) M(x,y) = i Zmax 0 c (m XimZXmjYij

i=l m=l j1=

Case II :

n S r

:2.2) M(x,y) = . max 0 Z ImjY
i=l m=l j =I

i1 m1

where x. m and y.j denote, respectively, the attacking forces

of type m and the defending forces of type j assigned by
.th

each player to the i target. Clearly, each payoff func-

tion is convex in y for each x and convex in x for each y.



-7-

3. GAMES WITH CONVEX PAYOFF FUNCTIONS IN En

Let M(x,y) be a payoff function defined for all y in

some convex compact set Y in E n, and for all x in some com-

pact set X. Assume that M(xy) is jointly continuous in

x and y, and convex in y for each xcX. Let U and W be the

mixed strategy spaces of the two players, i.e., all dis-

tribution functions over X and Y, respectively. Games of

this type have solutions characterized by the following

theorem of Bohnenblust, Karlin, and Shapley [41.

THEOREM

Let M(x,y) be as described above. Then the function

0(y) = sup M(x.y)
x

achieves its minimum at some point yocY. Further,

there exist numbers {c°}, jx°] such that

n+l

E 0. M(x 0,y) Ž.P(

i-i+ 0

n+l

for all y(Y, where c 0 0 and Z co - 1.i=l~
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Thus, if Blue uses the finite mixed strategy

n+l

u (x) = f u W(x)
x 0

i

his payoff will be at least p(y ). But if Red uses the

pure strategy y,0 then for any xEX the payoff to Blue is

M(x,y) < sup M(x,yo) - 0(yo)
X

Therefore, p(yo ) is the value of the game, and [u ,y0) are

optimal strategies for Blue and Red, respectively.

If X is a simplex with vertices a. (1 5 i 5 n), then

every xcX has a representation of the form

n n

7 4iai 4,i, 0 ' ,= 1I
i=l •=

Thus, if M(x,y) is also convex in x for each ycY, then

n n

M(x,y) = A va i 5(aY)

so that
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sup M(x,y) = sup M(ai,Y).
x i

It is therefore sufficient for Blue to randomize over the

vertices of the simplex X.
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4. THE "NO SOFT-SPOT" PRINCIPLE

The variables of the payoff functions (2.1) and (2.2)

range over simplices whose vertices may be represented by

matrices

ei -- (0,0,o... a, ... ,0)

(1• i n)

= (0,0,..., d,... ,0)

respectively. The vectors a = (al,a 22 .. ,as)' and
th

d = (dl,d 2 ,... ,d r)' occupy the i column in each matrix,

and the remaining elements are zero. These vertices repre-

sent the pure strategies for Blue and Red, respectively.

Applying the theorem to the game described in Secs. 1 and

2, we have the following:

i) Blue has an optimal mixed strategy which consists
of allocating his entire force to a single target
chosen by means of a probability-distribution
function;

2) Red has the optimal pure strategy (the y that

minimizes sup M(x,y)) of allocating each type of
x

defensive unit over the n targets;

3) The value of the game is min sup M(x,y).
y x
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While the theorem of Sec. 3 completely characterizes

the solution of the game, it does not provide any practical

means for determining either the optimal strategies or the

value of the game. We achieve this by using Dresher's

"No Soft-Spot" principle [2,3], which states tha4.: an optimal

strategy for Red is to defend only those targets which,

under a concentrated attack, would yield Blue tne value of

the game. Conversely, Blue should attack only those targets

which Red chooses to defend.
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5. THE SOLUTION

The technique to be used is applicable to the payoff

function of both Case I and Case II. However, since the

latter is mathematically more interesting, we restrict the

derivation of results to Case II. Section 6 quotes the

corresponding results for Case I.

Recall that the payoff to Blue is

n S r

(5.1) M(x,y) Z "i max 0, fm X im X mjy
i-l jl

At the ith target, Blue and Red each choose a column vector

whose elements represent the amounts of each type of re-

source unit allocated to that target: Xi - (x 1m), Yi . (Y-j)'

(I < m - s, 1 ! j • r), respectively. In addition, define

column vectors GI (yifM), VI . (v /Ylfm), where vm is

that portion of the game value v contributed by the attack-

ing units of type m and

5

rn-1

SA
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Using this notation, the payoff function may be written

as

(5.2) M(x,y) I max 0 , Gi (Xi-AY)
i-i

. th

If Blue commits his entire force to the it target,

he must receive (by the "No Soft-Spot" principle) exactly

v. Thus, replacing Xi by the vector Q = (a m) yields

(5.3) Gil (Q - AYi - V.) d 0

The left side of Eq. (5.3) represents the inner product of

two vectors in an s-dimensional vector space. Hence, it

will be satisfied by any vector orthogonal to Gi. Since,

in particular, any vector is orthogonal to the zero vector,

(5.4) AYi - Q - Vi .

In order to solve Eq. (5.4) for Yi. we introduce the

concept of the generalized inverse (g.i.) for a matrix,

due to Moore [5] and Penrose (6,7]. The g.i. exists for

any (possibly rectangular) matrix with real or complex



-14-

elements. Moreover, it is unique. The g.i. of a matrix

A (written A ) is that X which satisfies the four matrix

equations

(5.5) AXA- A

(5.6) XAX - X

(5.7) (AX)* = AX

(5.8) (XA) - XA

where A denotes the conjugate transpose of A. The matrix

A need not be square, and may even consist entirely of zero

elements. If A is non-singular, then A A. In par-
S~-I

ticular, if a is a scalar, then a means a if a A 0, and

0 if a - 0. If AA is non-singular, then Eqs. (5.5) and

(5.8) yield

* * A* * *
(AXA) -(XA) A XAA -A

and, therefore,
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*)-

(5.9) XA- = A (AA*)

Corsider the matrix equation BZ = C. A necessary and

sufficient condition for this equation to have a solution

is that BB C - C [6,9], in which case the general solu-

tion is given by

(5.10) Z = B C + F(I - B tB)

where F is an arbitrary matrix.

Returning to Eq. (5.4), recall that we assumed M

to be non-singular. This implies, from Eq. (5.9), that

-T ! (identity matrix), which is clearly a sufficient

condition for E,. (5.4) to have a solution of the form of

Eq. (5.10).

Since t' matrix F in Eq. (5.10) is arbitrary, it may

be taken equal to the zero matrix Thus, a particular

solution of Eq. (5.4) is given by

(5.11) Y A (Q- V)

Let A - (.jm). Then Eq. (5.11) and the definition of Yi

yields
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(5.12) Yij a m - *i m Ojm (1 s j s r)

By the "No Soft-Spot" principle, Red should allocate

all the defensive units of type j among the t(j) s n most

valuable targets. Summing Eqs. (5.12) over these targets

and rearranging terms yields

v (
(5.13) -m Aj ' tjJ) m " ) (

m= mm1

where

t(j)

Lt(j) Z I/i"
i-i

If we define the column vectors V = (v m! ), R = (d./t(j)),

and the matrix S - diag (t()/L t() (1 - m I j 1 r),

then Eqs. (5.13) are equivalent to the matrix equation

(5.14) A V * S(A Q - R)

Premultiplying both sides of Eq. (5.14) by A, and recalling

that AA I, gives
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(5.15) V - AS(AQ - R)

or

(5.16) vt i (t(j) a. - d L (1 L s)

j~i d)
ja m t(j)

We wish to choose the numbers t(j) ' n so as to maxi-

mize v. Clearly, it is sufficient to individually maximize

each of the terms

S sa~

(5.17) Z(t(j)) f X a mftjm - d Lt(i)
t=i mMl J)/

In fact, we will show that the game value is a concave

function of t(j). To do this, we must show that

tjt(j) + 2) - 2;4t(j) + 1) + 4(t(j)) < 0

Note that condition (1.3) implies that

L L L
t~j+ý t(j)+' t(j)
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Letting

s

(5.18) p(t(j)) = t(j) a -d. Lt"i)

t=I m=1

and recalling that 0 X j 1, then
tCj

(5.19) 0(t(j) + 2) - 20(t(j) + I) + db(t(j)) r ((t(j) + 2)

S

- 2p(t(j) + 1) + p(t(j)) r _ z C/Lt(j)
t=i

S J
(t(j) + 2) a' m~ 2t. ) ~ + 2d.

m=l m=l

+ t(j) a mrjm - d t 0

m=l

which is the required condition. Thus, Red will allocate

his resources of type j among the t(j) • n most valuable

targets such that 0(t(j)) is a maximum.

By the "No Soft-Spot" principle, Blue will attack,

with his entire force, only defended targets. At all such

targets, his expected unit payoff will be the same. Letting

________________________________________________________________________
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P. be the probability that Blue will attack the ith target,

and letting

t = max t(j)
J

we have

(5.20) Pim = C (constant)

and

t

(5.21) • P. = 1
i=l

A few steps, then, yield

(5.22) P. = i/yjL (i • i • t)

P. = 0 (i > t).

THEOREM

(i) The game value is non-negative.
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(ii) The pure strategy for Red given by Eq. (5.12)

and the mixed strategy for Blue given by Eq.

(5.22) are both optimal. (
Proof: (
To prove (i), let

L =max L E = min E
t~j)

Then

s r -

v (E/L) Z) -mZam m  d )

t=l j= K m=1

s r s s r
~~~m (tIL aXjjm " tjj !

4=l j=l m=l t=I j=l

= (E/L) (A - D) Ž 0

In order to prove (ii), we must show that Red's ex-

pectation is at most v and Blue's expectation at

least v. Integrating the payoff function with re-

spect to Red's optimal strategy yields
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s r

<R vi ZEg Z " am~izj VE~jmm
it mZe)t mj jm

tZ j=l Lm-l
js rn-i

r s .j}
j'l rnliZcm~j~

S S S

-vv

"Y V-

Integrating the payoff function with respect to

Blue's optimal strategy yields
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t s [r
ERB = Z vi/viLt Z a~ Z 7xjy~ij

s [r s]

t s r

Z1/Lt)c ktjZXyij

s r /

s r

ZE " ZX~d t(j)
t~=1 j=1 t

S r ( s~7 N

ZE:~ Z ~ t(j)
t-1 j- K Mn-
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6. SOLUTION FOR CASE I

The results for Case I may be derived in a manner

analogous to Case II, by treating each of Blue's resource

types individually. The optimal strategies are

s

Zi -Xj (vm/ yim
m-l

(1 j • r, 1 i • t(j))

where

r
Am I •xk'

k-I

and

Pi l/ i/ L t (I i t),

P 0 (i > t)

The game value is

r s

-~ fJ V~ 04 t(j) (am -JP L tj
L ~'~mjrr d1 t-1
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where (hj) are the elements of Alt and

S

Z c v

'L= I

t
f

_ U
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7. A NUMERICAL EXAMPLE

The Blue force is half planes (where e1 - 2) and

half surface ships (where c2 - 1). He is opposed by an

equal force of one-third planes, one-third submarines

carrying torpedos, and one-third surface ships. Red is

defending one large aircraft carrier (y1 - 1), two smaller

carriers (y2 '_ 3 = 1/2), and two tankers ( 4 - 5 - 1/4).

Red decides that, at any target, his planes will be dis-

tributed equally between Blue's planes and ships, three-

fourths of his surface ships will oppose planes and one-

fourth surface ships. Clearly, torpedos can be used only

against surface ships. From this verbal description of

the game,

a1 - a2 - F/2 ,

d1 - d2 - d3 - F/3

L1 - 1, L2 - 3. L - 5, L - 9, L 5 13,

1/2 0 3/4

1 l//2 1 1/4)
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Equation (5.9) gives

1/2 3/14

At -1/2 13/14

1l -1/f7

Therefore,

0(t(1)) = (15t(l) - 14) F/28Lt(l)

i(t(2)) = (9t(2) - 14) 1,42Lt( 2 )

ý(t(3)) = (9t(3) - 7) F/12Lt( 3 )

Evaluating these functions for t(j) 1 i, 2, 3, 4, 5, we

find that t(1) = t(2) - t(3) - 3. Thus Red will defend

only the carriers. Substituting in Eq. (5.16), we get

vI - 13F/30, v 2 - 11F/60, v - 37F/60 .

Substitution in Eq. (5.12) yields for Red the optimal

strategy:

-. .... .- " ---. -• -T',i--'"--L--- _..--'- ,, r-.-----" -'.. l. I-.,-
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yll = 22F/105 Y2 1 ' 13F/210 Y3 1 ' 13F/210,

Y12 ' 16F/105 Y2 2 ' 19F/210 Y3 2 - 19F/210,

Y13 - 5F/21 Y2 3 ' F/21 Y3 3 - F/21,

yij - o, i - 4,5

Finally, Eq. (5.22) shows that Blue should attack the large

carrier with probability 1/5, and each of the two smaller

carriers with probability 2/5.
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